Transformation between Hyperbolic and Trignometric function
* For hyperbolic sine:
Given that
$$\sinh x = -i \sin (i x)$$
We substitute $x$ with $ix$ to get:
$$\sinh (ix) = i \sin x$$
* For hyperbolic cosine:
Given that
$$\cosh x = \cos (i x)$$
We substitute $x$ with $ix$ to get:
$$\cosh (ix) = \cos x$$
* For hyperbolic tangent:
Given that
$$\tanh x = -i \tan (i x)$$
We substitute $x$ with $ix$ to get:
$$\tanh (ix) = i \tan x$$
* For hyperbolic cotangent:
Given that
$$\coth x = i \cot (i x)$$
We substitute $x$ with $ix$ to get:
$$\coth (ix) = -i \cot x$$
* For hyperbolic secant:
Given that
$$\operatorname{sech} x = \sec (i x)$$
We substitute $x$ with $ix$ to get:
$$\operatorname{sech} (ix) = \sec x$$
* For hyperbolic cosecant:
Given that
$$\operatorname{csch} x = i \csc (i x)$$
We substitute $x$ with $ix$ to get:
$$\operatorname{csch} (ix) = -i \csc x$$
In each of the transformations, we have used the fact that $i^2 = -1$.
Comments
Post a Comment